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Bayes’ rule

As expected the point of departure to perform Bayesian
inference is the Bayes’ rule, that is, the conditional probability
of Ai given B is equal to the conditional probability of B given
Ai times the marginal probability of Ai over the marginal
probability of B ,

P(Ai |B) =
P(Ai ,B)

P(B)

=
P(B |Ai)× P(Ai)

P(B)
, (1)

where P(B) =
∑

i P(B |Ai)P(Ai) 6= 0, {Ai , i = 1, 2, . . . } is a
finite or countably infinite partition of a sample space. 3 / 32
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The base rate fallacy

Assume that the sample information comes from a positive
result from a test whose true positive rate (sensitivity) is 98%,
P(+|Desease) = 0.98. On the other hand, the prior
information regarding being infected with this disease comes
from a base incidence rate that is equal to 0.002, that is
P(Disease) = 0.002. Then, what is the probability of
being actually infected?

P(disease|+) =
P(+|disease)× P(disease)

P(+)
,

where P(+) =
P(+|disease)× P(disease) + P(+|¬disease)× P(¬disease).
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God existence

Let’s say that there are two cases of resurrection (Res), Jesus
Christ and Elvis, and the total number of people who have
ever lived is 108.5 trillion, then the prior base rate is
2/108,500,000,000. On the other hand, the sample
information comes from a very reliable witness whose true
positive rate is 0.9999999. Then, what is the probability of
this miracle?

P(Res|Witness) =
P(Witness|Res)× P(Res)

P(Witness)
,

where P(Witness) =
P(Witness|Res)×P(Res)+(1−P(Witness|Res))×(1−P(Res)).
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Conditional version of the Bayes’ rule

Let’s have two conditioning events B and C , then equation 1
becomes

P(Ai |B ,C ) =
P(Ai ,B ,C )

P(B ,C )

=
P(B |Ai ,C )× P(Ai |C )× P(C )

P(B |C )P(C )
,
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The Monty Hall problem

This was the situation faced by a contestant in the American
television game show Let’s Make a Deal. There, the
contestant was asked to choose a door where behind one door
there is a car, and behind the others, goats. Let’s say that the
contestant picks door No. 1, and the host (Monty Hall), who
knows what is behind each door, opens door No. 3, where
there is a goat. Then, the host asks the tricky question to the
contestant, do you want to pick door No. 2?
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The Monty Hall problem

Let’s name Pi the event contestant picks door No. i , Hi the
event host picks door No. i , and Ci the event car is behind
door No. i . In this particular setting, the contestant is
interested in the probability of the event P(C2|H3,P1).
The important point here is that the host knows what is
behind each door and randomly picks a door given contestant
choice. That is, P(H3|C3,P1) = 0, P(H3|C2,P1) = 1 and
P(H3|C1,P1) = 1/2.
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P(C2|H3,P1) =
P(C2,H3,P1)

P(H3,P1)

=
P(H3|C2,P1)P(C2|P1)P(P1)

P(H3|P1)× P(P1)

=
P(H3|C2,P1)P(C2)

P(H3|P1)

=
1× 1/3

1/2

=
2

3
,
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Bayes’ rule

For two random objects θ and y, the Bayes’ rule may be
analogously used,

π(θ|y) =
p(y|θ)× π(θ)

p(y)
, (2)

where π(θ|y) is the posterior density function, π(θ) is the prior
density, p(y|θ) is the likelihood (statistical model), and
p(y) =

∫
Θ
p(y|θ)π(θ)dθ is the marginal likelihood or prior

predictive.
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Bayes’ rule

For two random objects θ and y, the Bayes’ rule may be
analogously used,

π(θ|y) =
p(y|θ)× π(θ)

p(y)
(3)

∝ p(y|θ)× π(θ), (4)

where π(θ|y) is the posterior density function, π(θ) is the prior
density, p(y|θ) is the likelihood (statistical model), and
p(y) =

∫
Θ
p(y|θ)π(θ)dθ is the marginal likelihood or prior

predictive.
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Model uncertainty

Observe that the Bayesian inferential approach is conditional,
that is, what can we learn about an unknown object θ given
that we already observed y? The answer is also conditional on
the probabilistic model, that is p(y|θ). So, what if we want to
compare different models, let’s say Mm, m = {1, 2, . . . ,M}.

π(θ|y,Mm) =
p(y|θ,Mm)× π(θ|Mm)

p(y|Mm)
. (5)
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The posterior model probability is

π(Mm|y) =
p(y|Mm)× π(Mm)

p(y)
, (6)

where p(y|Mm) =
∫

Θ
p(y|θ,Mm)× π(θ|Mm)dθ due to

equation 5, and π(Mm) is the prior model probability.

13 / 32



Bayesian Econometrics

A brief summary of theory

A brief summary of theory

Posterior odds

We can avoid calculating p(y) when performing model
selection (hypothesis testing) using posterior odds ratio, that
is, comparing models M1 and M2,

PO12 =
π(M1|y)

π(M2|y)

=
π(y|M1)

π(y|M2)
× π(M1)

π(M2)
, (7)

where the first term in equation 7 is named the Bayes Factor,
and the second term is the prior odds.
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Posterior probabilities from posterior odds

Given two models M1 and M2 such that
π(M1|y) + π(M2|y) = 1. Then, π(M1|y) = PO12

1+PO12
and

π(M2|y) = 1− π(M1|y).

In general, π(Mm|y) = π(y|Mm)×π(Mm)∑M
l=1 π(y|Ml )×π(Ml )

.
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2 log(PO12) PO12 Evidence against M2

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table: Kass and Raftery guidelines (1995)
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Probabilistic predictions

We can also obtain a posterior predictive distribution,

π(y0|y,Mm) =

∫
Θ

π(y0, θ|y,Mm)dθ

=

∫
Θ

π(y0|θ, y,Mm)π(θ|y,Mm)dθ. (8)

Observe that equation 8 is a posterior expectation
E[π(y0|θ, y,Mm)]. This is a very common feature in Bayesian
inference that is suitable for computation based on Monte
Carlo integration. In addition, the Bayesian approach takes
estimation error into account.
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Model uncertainty in prediction

If we want to consider model uncertainty in prediction or any
unknown probabilistic object, we can follow same arguments.
In the prediction case,

π(y0|y) =
M∑

m=1

π(Mm|y)π(y0|y,Mm), (9)
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Model uncertainty in parameters’ inference

In parameters,

π(θ|y) =
M∑

m=1

π(Mm|y)π(θ|y,Mm), (10)

where E(θ|y) =
∑M

m=1 θ̂mπ(Mm|y),, Var(θ|y) =∑M
m=1 π(Mm|y)V̂ar(θ|y,Mm)+

∑M
m=1 π(Mm|y)(θ̂m−E[θ|y)]2,

θ̂m and V̂ar(θ|y,Mm) are the posterior mean and variance
under model m, respectively.
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Bayesian updating

A nice advantage of the Bayesian approach, which is very
useful in state space models, is the way that the posterior
distribution updates with new sample information. Given
y = y1:t+1 a sequence of observations, then

π(θ|y1:t+1) ∝ p(y1:t+1|θ)× π(θ)

= p(yt+1|y1:t , θ)× p(y1:t |θ)× π(θ)

∝ p(yt+1|y1:t , θ)× π(θ|y1:t).
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Bayesian updating

This is particular useful under the assumption of conditional
independence, that is, yt+1 ⊥ y1:t |θ, then
p(yt+1|y1:t , θ) = p(yt+1|θ) such that the posterior can be
recovered recursively. This facilities online updating due to all
information up to t being in θ. Then,
π(θ|y1:t+1) ∝ p(yt+1|θ)× π(θ|y1:t) ∝

∏t+1
h=1 p(yh|θ)× π(θ).
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Sampling properties of Bayesian “estimators”

π(θ|y) ∝ exp {l(y|θ)} × π(θ)

≈ exp

{
l(y|θ̂)− N

2σ2
(θ̂ − θ0)2

}
× π(θ)

∝ exp

{
− N

2σ2
(θ̂ − θ0)2

}
× π(θ)

Observe that we have that the posterior density is proportional
to the kernel of a normal density with mean θ̂ and variance
σ2/N as long as π(θ̂) 6= 0. This kernel dominates as the
sample size gets large due to N in the exponential term.
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Estimation problems

Result 1

If L(θ, a) = (θ − a)2, the Bayes rule is δπ(x) = Eπ(θ|x)[θ]

Result 2

If L(θ, a) = w(θ)(θ − a)2, the Bayes rule is

δπ(x) = Eπ(θ|x)[w(θ)θ]

Eπ(θ|x)[w(θ)]
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Estimation problems

Result 3

If L(θ, a) = |θ − a|, any median is a Bayesian estimate of θ.

Result 4

If L(θ, a) =

{
K0(θ − a), θ − a ≥ 0
K1(a − θ), θ − a < 0

}
any K0/(K0 + K1)-fractile

of π(θ|x) is a Bayes estimate of θ.
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Result 5

In testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, the actions of
interest are a0 and a1, where ai denotes no rejection of Hi .

If L(θ, ai) =

{
0, θ ∈ Θi

Ki , θ ∈ Θj(j 6= i)

}
The posterior expected

losses of a0 and a1 are K0P(Θ1|x) and K1P(Θ0|x),
respectively. The Bayes decision is that corresponding to the
smallest posterior expected loss.
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Result 5

In the Bayesian test, the null hypothesis is rejected, that is,
action a1 is taken, when K0

K1
> P(Θ0|x)

P(Θ1|x)
, where usually

Θ = Θ0 ∪Θ1, then P(Θ1|x) > K1

K1+K0
.

In classical terminology, the rejection region of the Bayesian

test is C =
{
x : P(Θ1|x) > K1

K1+K0

}
.
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Credible sets

If C denotes a credible rule, that is, when x is observed, the
set C (x) ⊂ Θ will be the credible set for θ, and given the loss
function L(θ,C (x)) = 1− IC(x)(θ), then
ρ(π(θ|x),C (x)) = 1− Pπ(θ|x)(θ ∈ C (x)).

Measure of credibility

Given α(x) as a measure of the credibility with which it is felt
that θ is in C (x), it would be reasonable to measure the
accuracy of the report by LC (θ, α(x)) = (IC(x)(θ)− α(x))2.
This loss function could be used to suggest a choice of the
report α(x). So, the Bayes choice of α(x) is then
Pπ(θ|x)(θ ∈ C (x)).
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Credible sets

Given the posterior π(θ|x), it is generally possible to compute
the probability that the parameter θ lies in a particular region
ΘR of the parameter space Θ:
P(θ ∈ ΘR |x) =

∫
ΘR
π(θ|x)dθ.

This is a measure of degree of belief that θ ∈ ΘR given the
sample and prior information.

Credible sets

The set ΘC ∈ Θ is a 100(1− α)% credible set w.r.t π(θ|x) if:
P(θ ∈ ΘC |x) =

∫
ΘC
π(θ|x)dθ = 1− α.
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Highest Posterior Density sets

HPD

A 100(1− α)% Highest Posterior Density set for θ is a
100(1− α)% credible interval for θ with the property that it
has a smaller space than any other 100(1− α)% credible set
for θ.
C = {θ : π(θ|x) ≥ k}, where k is the largest number such
that

∫
θ:π(θ|x)≥k π(θ|x)dθ = 1− α.

HPDs are very general tool in that they will exist any time the
posterior exists. However, they are not rooted firmly in
probability theory.
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Loss function

Suppose that one has a loss L(z , a) involving the prediction of
Z , so L(θ, a) = EZ

θ L(Z , a) =
∫
L(z , a)g(z |θ)dz , where g(z |θ)

is the density of Z . So, the prediction problem is reduced to
one involving just θ.
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Predictive density

Prediction should be based on the predictive density
π(Z |x) =

∫
π(Z , θ|x)dθ =

∫
π(Z |x , θ)π(θ|x)dθ.

The predictive pdf can be used to obtain a point prediction
given a loss function L(Z , z∗), where z∗ is a point prediction
for Z . We can seek z∗ that minimizes the mathematical
expectation of the loss function.
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Summary

I presented the basic theory concepts of Bayesian inference.
We are done in this course!!!
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